Propagator:

$$
\begin{align*}
\Delta_{F}(x) & \equiv(2 \pi)^{-4} \int d^{4} q \frac{\exp (i q \cdot x)}{q^{2}+m^{2}-i \varepsilon} \\
& =(2 \pi)^{-4} \int d^{3} q \int d q_{0} \frac{\exp \left(i\left(\vec{q} \cdot \vec{x}-q_{0} \cdot x_{0}\right)\right.}{\vec{q}^{2}-\left(q_{0}\right)^{2}+m^{2}-i \varepsilon} \tag{1}
\end{align*}
$$

\rightarrow has poles at

$$
\begin{aligned}
q_{0} & = \pm \sqrt{\dot{q}^{2}+m^{2}-i \Sigma} \\
& = \pm \sqrt{\vec{q}^{2}+m^{2}}=\frac{i \varepsilon}{2 \sqrt{\dot{q}^{2}+m^{2}}}+O\left(\Sigma^{2}\right)
\end{aligned}
$$

\rightarrow is in lower/upper half plane

We close the contour of integration in the lower half-plane for $x_{0} \rightarrow+\infty$ and in the upper half-plane for $x_{0} \rightarrow-\infty$

Thus

$$
\begin{aligned}
\Delta_{F}(x) & =(2 \pi)^{-4}\left[\int d^{3} q \frac{e^{i\left(\vec{q} \cdot \vec{x}-i x_{0} \sqrt{\vec{q}^{2}+m^{2}}\right)}}{2 \sqrt{\vec{q}+m^{2}}}\right] \theta(x) \\
& +(2 \pi)^{-4}\left[\int d^{3} q \frac{\left.e^{i\left(\vec{q} \cdot \vec{x}+i x_{0} \sqrt{\vec{q}^{2}+m^{2}}\right.}\right)}{2 \sqrt{\vec{q}+m^{2}}}\right] \theta(-x)
\end{aligned}
$$

where $\theta(x)$ is the step function

$$
\theta(x)= \begin{cases}1 & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

This can be quivalently written as

$$
\begin{equation*}
-i \Delta_{F}(x)=\theta(x) \Delta_{+}(x)+\theta(-x) \Delta_{+}(-x) \tag{2}
\end{equation*}
$$

where we have defined

$$
\Delta_{+}(x)=(2 \pi)^{-3} \int d^{3} p\left(2 p^{0}\right)^{-1} e^{i p \cdot x}
$$

in which p^{0} is taken as $+\sqrt{\vec{p}^{2}+m^{2}}$
We recognize in (1) the Green's function for the Klein-Gordon operator:

$$
\left(\square-m^{2}\right) \Delta_{F}(x)=-\delta^{4}(x)
$$

Check:

$$
\begin{aligned}
& \left(\square-m^{2}\right) \Delta_{F}(x) \\
= & (2 \pi)^{-4} \int d^{4} q \frac{\left(I-m^{2}\right) \exp (i q \cdot x)}{q^{2}+m^{2}-i \varepsilon} \\
= & (2 \pi)^{-4} \int d^{4} q \frac{\left(-q^{2}+m^{2}\right) \exp (i q \cdot x)}{q^{2}+m^{2}-i \Sigma} \\
= & -\delta^{4}(x)
\end{aligned}
$$

Now let us come back to the expression from last lecture:

$$
I\left(\mu^{2}\right)=-\frac{i}{(2 \pi)^{4}} \int d^{4} p\left(p^{2}+\mu^{2}-i \varepsilon\right)^{-3}
$$

\longrightarrow Rotate the contour in the po-plane by 90 degrees connfer-clockwise
§2.4 Symmetries of the Effective Action
When are symmetries of $I[\phi]$ also symmetries of $\Gamma[\phi]$?
In some cases this is automatic:
Consider the action

$$
I[\phi]=-\int d^{4} x\left[\lambda+\frac{1}{2} \partial_{\rho} \phi \partial^{\rho} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{24} g \phi^{4}\right]
$$

\rightarrow is invariant under $\phi \mapsto-\phi$ From the definition of $Z[7]$

$$
Z[J]=\int[\pi d \phi(y)] \exp \left(i I[\phi]+i \int d^{4} x \phi(x) \partial(x)\right)
$$

we see that $Z[-J]=Z[J]$
(Just redefine integration variables $\phi \rightarrow-\widetilde{\phi}$)
$\rightarrow W[J]=-i \log Z[J]$ is also even
Thus $\phi_{J} \equiv \frac{\delta}{\delta y} W[J]$ is odd:

$$
\phi_{-y}=-\phi_{y} \rightarrow J_{-\phi}=-J_{\phi}
$$

and therefore

$$
\Gamma[\phi] \equiv-\int d^{4} x \phi(x) y_{\phi}(x)+W\left[J_{\phi}\right]
$$

is even under $\phi \mapsto-\phi$.

Assume now the contrary:
$I[\phi]$ is an action even under $\phi \mapsto-\phi$ but $\Gamma[\phi]$ turns out not to be
\rightarrow there will be terms proportional to $\int d^{4} x \phi$ and $\int d^{4} x \phi^{3}$ in $T[\phi]$ with divergent coefficients (coming from loop integrations)
\rightarrow the symmetries of action $I[\phi]$ does not allow us to introduce counterterms to absorb these infinities.
More rigorous treatment:
Consider symmetries generated by

$$
X^{n}(x) \rightarrow X^{n}(x)+\varepsilon F^{n}\left[x_{i} x\right]
$$

where F^{n} is a function of x^{n} that depends functionally on X^{n} (here X^{n} are meant to include not only matter fields but also ghost fields).
symmetry: $I[X+\varepsilon F]=I[X]$,

$$
\prod_{n_{1} x} d\left(x^{n}(x)+\varepsilon F^{n}\left[x_{i} x\right]\right)=\prod_{n_{1} x} d x^{n}(x)
$$

Thus

$$
\begin{aligned}
& Z[J]=\int\left[\prod_{n 1 x} d\left(x^{n}(x)+c F^{n}\left[x_{i} x\right]\right)\right] \\
& \times \exp \left\{i I[x+\varepsilon F]+i \int d^{4} x\left(x^{n}(x)+\varepsilon F^{n}\left[x_{i} x\right]\right) J_{n}(x)\right\} \\
& =\int\left[\prod_{n, x} d x^{n}(x)\right] \exp \left\{i I[x]+i \int d^{4} x\left(x^{n}(x)+\varepsilon F^{n}\left[x_{i} x\right]\right) y_{n}(x)\right\} \\
& =Z[J]+i \varepsilon \int\left(\prod_{n i x} d x^{n}(x)\right) \int F^{n}\left[y_{i} x\right] J_{n}(y) d^{4} y \\
& \times \exp \left\{i I[x]+i \int d^{4} x x^{n}(x) J_{n}(x)\right\}
\end{aligned}
$$

and hence

$$
\int d^{4} y\left\langle F^{n}(y)\right\rangle_{y} Y_{n}(y)=0
$$

where $\left\rangle_{y}\right.$ denotes the quantum average in the presence of the current $J_{n}(x)$,

$$
\begin{aligned}
Z[\mathfrak{J}] & \left\langle F^{n}(y)\right\rangle_{J} \equiv \int\left(\prod_{n \mid x} d x^{n}(x)\right) F^{n}\left(y_{i} x\right) \\
& x \exp \left\{i I[x]+i \int d^{4} x x^{n}(x) \gamma_{n}(x)\right\}
\end{aligned}
$$

normalized so that $\langle 1\rangle_{z}=1$.
using $\quad J_{n, x}(y)=-\frac{\delta \Gamma[x]}{\delta x^{n}(y)}$

$$
\rightarrow 0=\int d^{4} y\left\langle F^{n}(y)\right\rangle_{\gamma_{x}} \frac{\delta T[x]}{\delta x^{n}(y)}
$$

In other words, $\Gamma[x]$ is invariant under

$$
\begin{equation*}
x^{n}(y) \rightarrow x^{n}(y)+\varepsilon\left\langle F^{n}(y)\right\rangle_{\gamma x} \tag{x}
\end{equation*}
$$

\rightarrow "Slarnov-Taylor identities"
For "linear" transformations

$$
\begin{aligned}
F^{n}\left[x_{i} x\right] & \left.=s^{n}(x)+\int t_{m}^{n}(x, y) x^{m}(y) d^{4}\right\rangle \\
\rightarrow\left\langle F^{n}(x)\right\rangle_{\gamma} & =s^{n}(x)+\int t^{n}(x, y)\left\langle x^{m}(y)\right\rangle_{\gamma} d^{4} y \\
& =s^{n}(x)+\int t^{n} m(x, y) x^{m}(y) d^{4} y \\
& =F^{n}\left[x_{i} x\right] .
\end{aligned}
$$

Thus equation (x) tells us that $\Gamma[x]$ is invariant under all functional linear tres. that leave $I[x]$ invariant.
This is not true for non-linear tres.!

