$$q_{0} = \pm \sqrt{q^{2} + m^{2} - i\epsilon}$$
$$= \pm \sqrt{q^{2} + m^{2}} + \frac{i\epsilon}{2\sqrt{q^{2} + m^{2}}} + G(\epsilon^{2})$$

We close the contour of integration in the however half-plane for $x_0 \rightarrow +\infty$ and in the upper half-plane for $x_0 \rightarrow -\infty$

Thus

$$\Delta_{F}(x) = (2\pi)^{-4} \left[\int d^{3}q \; \frac{e^{i\left(\frac{d}{q}\cdot\overline{x} - ix \sqrt{q^{2}+m^{2}}\right)}}{2\sqrt{q}+m^{2}} \right] \theta(x)$$

$$t \; (2\pi)^{-4} \left[\int d^{3}q \; \frac{e^{i\left(\frac{d}{q}\cdot\overline{x} + ix \sqrt{q^{2}+m^{2}}\right)}}{2\sqrt{q}+m^{2}} \right] \theta(x)$$
where $\theta(x)$ is the step function

$$\theta(x) = \begin{cases} 1 \; far \; x \ge 0 \\ 0 \; otherwise \end{cases}$$
This can be quivalently written as

$$-i\Delta_{F}(x) = \theta(x) \Delta_{+}(x) + \theta(-x)\Delta_{+}(-x) \qquad (2)$$
where we have defined

$$\Delta_{+}(x) = (2\pi)^{-3} \int d^{3}p \; (2p^{0})^{-1} e^{ip \cdot x}$$
in which p^{0} is taken as $+ \sqrt{p^{2}+m^{2}}$
We recognize in (1) the Green's function
for the Klein-Gordon operator:

$$\left(\Box - m^{2}\right) \Delta_{F}(x) = - 8^{4}(x)$$

<u>§2.4</u> Symmetries of the Effective Action When are symmetries of I[\$] also symmetries of $\Gamma[\phi]$? In some cases this is automatic: Consider the action $\mathbb{I}\left[\phi\right] = -\left[d^{4} \times \left[\lambda + \frac{1}{2}\partial_{\mu}\phi \partial^{\mu}\phi + \frac{1}{2}m^{2}\phi^{2} + \frac{1}{24}g\phi^{4}\right]$ -> is invariant under \$\$ +> -\$ From the definition of Z[7] $\mathbb{Z}[\mathcal{T}] = \int [\mathcal{T}d\phi(\mathcal{Y})] \exp(i\mathbb{I}[\phi] + i\int d^{4}x \,\phi(x)\mathcal{T}(x))$ we see that Z[-7] = Z[]) (Just redefine integration variables $\phi \rightarrow -\overline{\phi}$) -> W[]] = -ilog Z[]] is also even Thus $\phi_{J} = \frac{\partial}{\partial T} W[T]$ is odd: $\Phi_{-\gamma} = -\Phi_{\gamma} \longrightarrow J_{-\phi} = -J_{\phi}$ and there fore $\nabla \left[\phi \right] = - \int d^4 x \, \phi(x) \, \mathcal{J}_{\phi}(x) + \mathcal{W} \left[\mathcal{J}_{\phi} \right]$ is even under \$+>-\$.

Assume now the cantrary:

$$I[\phi]$$
 is an action even under $\phi \mapsto -\phi$
but $T[\phi]$ turns out not to be
 \rightarrow there will be terms proportional
to $\int d^{4}x \phi$ and $\int d^{4}x \phi^{5}$ in $T[\phi]$
with divergent coefficients (coming from
loop integrations)
 \rightarrow the symmetries of action $I[\phi]$ does
not allow us to introduce counterterms
to absorb these infinities.
More rigorous treatment:
Consider symmetries generated by
 $\chi^{n}(x) \longrightarrow \chi^{n}(x) + \varepsilon F^{n}[x; \chi]$,
where F^{n} is a function of χ^{n} that depends
functionally on χ^{n} (here χ^{n} are meant to
include not only matter fields but also
ghost fields).
symmetry: $I[\chi + \varepsilon F^{n}[x; \chi]] = \prod d\chi^{n}(x)$

Thus

$$Z[T_{i}] = \int \left[\prod_{n \in X} d(x^{n}(x) + cF^{n}[x_{i}:X]) \right] \\
\times exp \left\{ iI[X + \varepsilon F] + i \int d^{d}x (x^{n}(x) + \varepsilon F^{n}[x_{i}:X]) f_{n}(x) \right\} \\
= \int \left[\prod_{n \in X} dx^{n}(x) \right] exp \left\{ iI[X] + i \int d^{d}x (x^{n}(x) + \varepsilon F^{n}[x_{i}:X]) f_{n}(x) \right\} \\
= Z[T_{i}] + i\varepsilon \int \left(\prod_{n \in X} dx^{n}(x) \right) \int F^{n}[Y_{i}:X] f_{n}(y) d^{d}y \\
\times exp \left\{ iI[X] + i \int d^{d}x x^{n}(x) f_{n}(x) \right\} \\
and hence \\
\int d^{d}y \langle F^{n}(y) \rangle_{y} f_{n}(y) = 0, \\
where \langle \rangle_{z} denotes the quantum average$$

where
$$\langle \gamma_{q} denotes for quantity is in the presence of the current $\int u(x)$,
 $Z[\gamma_{q}] \langle F'(\gamma) \rangle_{q} = \int (\prod d \chi''(x)) F''(\gamma_{q} \chi)$
 $\times \exp \left\{ i I[\chi] + i \int d'' \chi \chi''(\chi) \int u(\chi) \right\}$,$$

normalized so that <1>j=1.